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Abstract

What is the future of international migration flows? The growing availability of bi-

lateral international migration data has resulted in an improved understanding of the

determinants of migration flows through the estimation of theory-based gravity models.

However, the use of these models as a prediction tool has remained a mostly unexplored

research area. This paper estimates simple gravity models of bilateral migration flows

for the whole world and projects these models into the future. We focus on a par-

ticularly hard-to-predict country, Spain, which evolved from an emigrant-sending to

an immigrant-receiving country, and compare the estimates from internationally avail-

able data to those coming from local sources. Our results show that the projections

of migration flows depend more heavily on the span of the baseline dataset used to

estimate the model than on the particular functional form and variables chosen for the

prediction although we confirm the relevance of origin-country demographic factors.
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1 Introduction

The immigration flows into and emigration flows out of a given country depend on the

evolution of economic and political conditions both in that particular country and in all

countries in the world. The reason is that the rest of the world is a potential destination for

the inhabitants of any given country.

Despite being aware of this reality, those performing immigration projections tend to

use notably rough assumptions. National and international institutions regularly update

population projections, needed to predict the future of macroeconomic variables and different

policy scenarios. These projections are based on different assumptions on the path of fertility,

mortality and, also, immigration and emigration.

In the case of Spain, migration flows accounted for 34 per cent of the Spanish population

growth between 1960 and 2015. In more recent years, from 1998 to 2015, this figure went

up to 85 per cent.1 Hence, if the past is any indication, any model of the evolution of the

population of Spain needs to carefully examine the role of immigration. However, Spain

provides a clear example of the roughness of the assumptions on immigration scenarios that

several institutions have established. The United Nations (2015) predict net migration to

Spain to remain stable at what they call “current” levels until 2050. These current levels refer

to the level of net migration in Spain in the year 2010, which was a net inflow of 100,000

immigrants. Later, United Nations (2015) foresees a slow reduction of this net intake of

50 per cent by the year 2100. EUROSTAT (Lanzieri, 2017) makes a more sophisticated

prediction. They estimate an ARIMA model for net migration to Spain. The result is

basically a projection of the 1996-2015 trend until 2050. Then, Lanzieri (2017) goes on

to assume that all similarly calculated trends for European countries will converge towards

common immigration and emigration rates from 2050 to 2100. Finally, the official Spanish

statistics office, INE (2016), fixes gross immigration flows to Spain to the last available level,

the one for 2015: 343,614 immigrants. They then calculate average emigration rates by

province, age and gender from 2011-2015 and use them to project gross emigration into the

future.

The contribution of this paper is to use all of the available data and recent methodological

innovations to predict the evolution of emigration out of Spain and immigration into Spain in

the XXIst century, thus escaping these rough assumptions. On the data front, we contribute

1Own calculations on data from World Bank (2017) and INE (2017b).
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on two aspects:

• Longer time series. We will be using 1960-2000 decennial data from the World Bank

(Özden, Parsons, Schiff, and Walmsley, 2011) combined with United Nations data

(United Nations, 2017) for 2010 and 2017 to measure immigration and emigration

flows.2 We will also use 1988-2016 yearly data from the Spanish Estad́ıstica de Varia-

ciones Residenciales (INE, 2017a) to get a more precise image of the distribution of

Spanish migration flows by age and gender.

• Wider cross-sectional data. We will be using dyadic datasets with information on

origins and destinations. This means 231 × 231 dyads in the World Bank dataset and

more than 200 origin countries in the Spanish data. We will treat both immigration

and emigration at the same level.

The main advantage from using these datasets is that they will allow us to take advantage

from newly developed dyadic estimation strategies (Beine, Bertoli, and Fernández-Huertas

Moraga, 2016). We will make explicit the part of the history the practitioner can choose to

forecast migration flows and will add explanatory variables of three types to the model. First,

we will consider the demographic structure of both origin and destination countries. Many

authors have emphasized the role of demography in shaping international migration flows.3

Young countries have larger migration propensities because migration is an investment de-

cision (Sjaastad, 1962) whose rewards are typically easier to reap when the migratory move

takes place at younger ages. As far as destination countries are concerned, the demographic

structure may imply that the labor market competition is stronger if there are larger young

cohorts at destination and less fierce otherwise (Hanson and McIntosh, 2016).

Secondly, economic conditions both at origin and at destination will be included in the

model, allowing for different elasticities, as a microfounded gravity model will typically imply

that the elasticity of migration flows with respect to economic conditions at destination

should be larger than with respect to economic conditions at origin. The reason for this is

that destinations are more interchangeable among themselves than origins from the point of

view of the potential migrant (Beine, Bertoli, and Fernández-Huertas Moraga, 2016).

2Throughout the paper, we will treat the 2017 observations as if they corresponded to 2020 to keep the

decennial nature of the data.
3Recent examples are Hanson and McIntosh (2010) and Hanson and McIntosh (2012).
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Finally, a third element that will be added is the role of networks, also called diasporas

(Beine, Docquier, and Özden, 2011). The stocks of immigrants from the same origin present

at a destination facilitate migration movements both due to the possibility of reducing mi-

gration costs (Mckenzie and Rapoport, 2007) and the possibility of increasing the earnings

potential of immigrants at destination (Munshi, 2003).

The main results of the paper can be summarized as follows. When using these large

datasets, dyadic fixed effects absorb most of the explanatory power of the models, leaving

little room for demography, networks or economic activity to play a significant role on mi-

gration flows. These dyadic fixed effects absorb time-invariant variables such as physical

distance, linguistic distance, cultural distance, contiguity, common colonial history, etc. but

they also encompass average effects of the other variables. Unfortunately, in the absence of

an appropriate instrument, we cannot disentangle these effects. We can only say that there

is not enough variation in the data to identify a meaningful role for demography, networks

or economic activity. However, in the long run, even small variations in the trajectories of

these variables compound over time through their feedback in population, leading to a huge

variety of estimates of migration flows to Spain and in the rest of the world beyond the

year 2050. Specifically, the demographic structure of the countries of origin of the emigrants

explain most of the variation in the projections of migration flows into the future.

Many of the main determinants of international migration flows are not easy to project

into the future (Beine, Bertoli, and Fernández-Huertas Moraga, 2016). The main example

would be policies, which have been shown to be quantitatively very relevant in explaining

international migration in general (Bertoli and Fernández-Huertas Moraga, 2015) and more

particularly in the case of Spain (Bertoli and Fernández-Huertas Moraga, 2013). The visa

policy of the European Union regarding Turkey might become the most influential factor

explaining the arrival of immigrants into Europe within the next 50 years. This is clearly a

limitation of this paper and of other existing projections but it is still useful to understand

the forces over whose future evolution we do have some information, such as demography.

At least in the medium run, we can be reasonably certain about the demographic pressures

that different countries will experience.

Beyond the omission of potentially relevant variables, a fundamental assumption of the

model will be the null effect of immigration and emigration on the standard of living both in

Spain and in emigrant-sending countries. Despite the enduring controversies about the labor
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market effects of emigration,4 a common characteristic of most of the studies is that these

effects, be they slightly positive or slightly negative, tend to cluster around zero (Docquier,

Özden, and Peri, 2014), so that this is not as outlandish an assumption as it may appear

at first sight. Fundamentally for our purposes, this assumption allows us to treat economic

fundamentals as an exogenous variable in the model. It would even allow us to close the

model if we did not need the future demographic predictions to generate our forecasts of

immigration and emigration flows. When we use Spanish data only, we will be using these

demographic predictions as exogenous variables as well. The implied assumption there will

be that Spain is small enough in the world so as not to significantly affect the population

stocks of any given country. Only when we use the World Bank-UN data we will actually

be able to close the model and predict immigration and emigration for every country in the

world, thus updating the population estimates from United Nations (2015).

We are of course not the first ones that have tried to predict immigration and emigration

flows in the academic literature, setting aside the examples in international institutions

mentioned above. Hanson and McIntosh (2016) is a recent effort in this sense that is very

closely related to our work. However, there are two key differences in their approach. First,

they estimate their model only on 2000-2010 data on net migration to the OECD. This

is particularly problematic for the case of Spain since they are projecting that the Spanish

immigration boom, by which Spain experienced the largest and fastest immigration growth in

the OECD, will repeat every decade into the future. Second, their estimation assumptions

are much more restrictive than ours. Specifically, we take the critique by Bertoli (2017)

seriously and do not assume that the migration rate of a given cohort-gender cell only

depends on the size of these cells at origin and at destination. The rationale for this was

that there is economic competition within cells but not across cells, as in Borjas (2003). We

actually allow for cross-elasticities across cohort-cells and estimate these cross-elasticities

although there is not enough variation in the data to actually identify them separately.

Also, differently from Hanson and McIntosh (2016), we do not assume that origin variables

have the same elasticity as destination variables. We will estimate distinct coefficients for

origin and destination variables. For example, this gives us the possibility of considering

non-linear origin income effects on emigration (Clemens, 2014). Campos (2017) follows the

same approach as Hanson and McIntosh (2016) but he extends the dataset to a longer period,

4Borjas (2003) and Ottaviano and Peri (2012) could be considered the more classic references.
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using the same data from Özden, Parsons, Schiff, and Walmsley (2011) that we use in one

part of our analysis at the cost of not being able to differentiate by cohorts and gender.

An even more recent and more comprehensive effort than the one undertaken here is

the one by Dao, Docquier, Maurel, and Schaus (2017). They create and calibrate a general

equilibrium model to forecast immigration and emigration until 2100. In their model they

distinguish between two different types of workers (college educated and less educated),

which we are not able to do. They can do it because they only use 2010 stocks from DIOC-E

to parameterize their model. They use the parameterized model to make projections both

into the future and into the past.

The paper proceeds as follows. Section 2 explains the basic random utility maximization

model and how its aggregation results in a classical gravity equation. We next briefly develop

the characteristics of the datasets we employ in section 3. In section 4, we describe our

methodology to show the correspondence between the data and the model. Next, in section

5, we present our results. We offer some concluding remarks in the last section of the paper,

section 6.

2 The Model

In economics, migration decisions are typically modeled as the result of a choice of destination

by utility-maximizing individuals (Beine, Bertoli, and Fernández-Huertas Moraga, 2016).

Given that the choice of destination is a discrete one, the workhorse model for migration

studies is the random utility maximization model, developed by McFadden (1974). Once

the individual decisions from the random utility maximization model are aggregated, we

end up with a classical gravity equation. Next, we briefly develop how to derive the gravity

framework.

We start by letting popot represent the stock of the population residing in country o at

time t. We can then write the scale modt of the migration flow from country o to country d

at time t as:

modt = podtpopot−1 (1)

The term podt is the probability that an individual from country o migrates to country d

at time t, also known as the emigration rate.
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If we specialize the model to the Spanish case, net migration to Spain (nmSPt) in a given

year can be obtained as:

nmSPt =
∑
o 6=SP

moSPt −
∑
d6=SP

mSPdt (2)

Hence, net migration flows to Spain are composed by as many gross flows as twice the

number of countries in the world.

The random utility maximization model is used to estimate these emigration rates by

obtaining the expected value of podt.

The utility that one individual i who was located in country o at time t− 1 derives from

opting for country d at time t is:

Uiodt = β′xodt + εiodt (3)

The vector xodt includes all deterministic components of utility while εiodt is an individual-

specific stochastic component.

The distributional assumptions on εiodt determine the expected probability E(podt) that

opting for country d represents the utility-maximizing choice (McFadden, 1974). The use of

very general distributional assumptions for εiodt leads to this type of expression:

ln

(
podt
poot

)
=

1

τ
β′xodt − β′xoot +MRModt (4)

MRModt is the multilateral resistance to migration term (Bertoli and Fernández-Huertas

Moraga, 2013). It reflects the effect of alternative destinations on bilateral migration rates.

The parameter τ is the dissimilarity parameter, which is related to the inverse of the correla-

tion in εiodt across alternative destinations. When the independence of irrelevant alternatives

holds, then τ = 1 and MRModt = 0. In that case, εiodt is modeled as following an iid extreme

value type I distribution.

From the above theoretical expression, what we actually take to the data is the following:

ln

(
modt

moot

)
=

1

τ
β′xodt − β′xoot +MRModt + ξodt (5)

The vector xodt contains the independent variables in the model. As mentioned in the

introduction, in our case these are:
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• Demographic structure. We will include the log of the size of different cohorts. Sub-

scripts o and d can be trivially extended to include country-cohort-gender groups in

some specifications although these have not been finally included in the paper.

• Economic conditions. We will proxy them by the log of the GDP per capita.

• Networks. This will be the stock of co-nationals from country o already residing in the

country of destination d.

If our interest laid on the effect of each of these variables on migration flows, we would

need to concern ourselves with the potential endogeneity of these variables. However, since

our interest is to predict, this is not such a pressing issue. Still, Hanson and McIntosh (2016)

argue that it is reasonable to assume that the demographic structures of the countries are

exogenous to current immigration flows at least in a generation’s horizon. Also, we will

assume that the effect of immigration and emigration on economic activity is close enough

to zero as to consider it negligible, justified by the fact that many estimates of the effects

of immigration and emigration actually cluster around zero.5 We would only need to worry

about the endogeneity of the network variable, which has often been instrumented by past

settlements or by proxies for these past settlements (Beine, Docquier, and Özden, 2011).

3 Data

This paper uses two different datasets to build the dependent variable in equation (5). On

the one hand, we will have the data collected by Özden, Parsons, Schiff, and Walmsley (2011)

from censuses around the world between 1960 and 2000, complemented with similar data for

2010 and 2017 from United Nations (2017). On the other hand, we will also build estimates

based on data from INE (2017a). Their main characteristics as well as their advantages and

disadvantages are detailed below.

3.1 World Bank data

Özden, Parsons, Schiff, and Walmsley (2011) collected the number of foreign-born individuals

from each country in the world residing in every other country every ten years. Most countries

5Docquier, Özden, and Peri (2014) is a good example in this respect. Most effects of immigration and

emigration on wages are between -1 and 1 per cent over a decade.
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undertake decennial census counts of their populations and these are the ones that Özden,

Parsons, Schiff, and Walmsley (2011) exploit. Since not all countries have censuses every

ten years, they have interpolated some of their data points, as described in their paper.

Overall, they present a matrix of 231 × 231 entries for five different periods: 1960, 1970,

1980, 1990 and 2000. The census years in each country do not necessarily coincide but they

have been grouped. For example, the 2000 census for Spain was in fact conducted in 2001.

We complement the data from Özden, Parsons, Schiff, and Walmsley (2011) with data from

United Nations (2017) for the year 2010 and 2017 to get a more recent picture of migration

flows over the 21st century.

The main advantage of this combined World Bank-UN dataset is how comprehensive it

is. It spans the whole world for 67 years. This is the largest dataset available in terms of

time series and cross-sectionally. The cost is the lack of details about the composition of the

flows. We cannot distinguish by age. Furthermore, the random utility maximization model

described above implies that modt should be constructed with data on gross flows. However,

the data will only provide us with net flows that we will have to use as a proxy for gross

flows, as in Bertoli and Fernández-Huertas Moraga (2015), for example.

Figure 1 shows the evolution of the migration stocks related to Spain in the dataset. The

figure reflects four series: stocks of Spanish emigrants in the North, stocks of Spanish emi-

grants in the South, stocks of immigrants from the North in Spain and stocks of immigrants

from the South in Spain. Following Özden, Parsons, Schiff, and Walmsley (2011), the North

is defined as Western Europe plus the US, Canada, Japan, Australia and New Zealand, while

the South is the rest of the world.

There are two fundamental observations that stand out from looking at figure 1. The

first one is how Spain changed from being an emigration country between 1960 and 1990 to

an immigration country between 2000 and 2010 and an emigration country again between

2010 and 2017. In 1960, almost 2 million Spanish individuals lived in the South, mostly

Latin America. In 1970, the preferred destination for Spanish emigrants became the North,

specifically Western Europe. This changed in 2000 and 2010, when Spain became the host

of millions of immigrants from the South, and went back in the following years, when Spain

became an emigration country. The second observation that stands out is the huge mag-

nitude of the Spanish immigration boom in 2000 and 2010. By 2010, more than 5 million

immigrants from the South and one additional million from the North had chosen Spain
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Figure 1: Bilateral migration stocks to and from Spain (1960-2020)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017). 2017 data represented as if corresponding to 2020.

as their destination. The main countries of origin in this stock from the South were Latin

American countries (Ecuador, Colombia, etc.), Eastern Europeans (mainly Romania) and

Northern Africa (Morocco).

Figure 2 shows the same information as figure 1 but in terms of net flows rather than

stocks. For example, the 4 million mark for the South-Spain migration corridor comes from

substracting the 2010 data point from the 2000 one in figure 1. It thus means that immigrants

from Southern countries in Spain increased by 4 million between 2000 and 2010. These net

flows will be used as a proxy for gross flows when estimating equation (5).
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Figure 2: Net migration flows to and from Spain (1970-2020)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017). 2017 data represented as if corresponding to 2020.

3.2 INE data

The second data source that we will use will come from the Spanish statistics office. INE

(2017a) contains every change recorded in the Spanish population registry between 1988

and 2016. The inscriptions and cancellations into this Spanish population registry can be

exploited to build series of gross migration flows from every country in the world into Spain,

as in Bertoli and Fernández-Huertas Moraga (2013), and from Spain into every country in

the world yearly. In addition, the registry provides the microdata so that it is easy to divide

the data by age and gender groups. As shown by Bertoli and Fernández-Huertas Moraga

(2013), the coverage of immigration since 2000 is particularly good, even in the case of
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undocumented immigrants, as they had strong incentives to register in order to enjoy health

and education services from the municipalities where they resided.

Unfortunately, the data from INE (2017a) presents also some drawbacks. The most

notable one is its deficient coverage of emigration. There are no incentives for cancellations.

Most cancellations correspond to foreigners who must renew their inscription every two years

and these are only recorded since 2002. As a result, the emigration of Spanish nationals,

naturalized immigrants and European Union citizens is severely underestimated (González-

Ferrer, 2013).

With these caveats in mind, figure 3 presents the evolution of migration flows within

the dataset in INE (2017a). It offers a great description of the development of the Spanish

immigration boom until its peak in 2007 and its aftermath. After 2007, inflows go down

every year until 2013 while outflows go up after they started being recorded in 2002 and

they stabilize around 2010.

3.3 Additional data

The data for our independent variables comes from two additional sources. For the de-

mographic structure, we consider the population by age and gender for each country from

United Nations (2015). For the economic conditions, we take the series on the expenditure-

side real GDP at chained PPPs to generate GDP per capita from the Penn World Tables

(Feenstra, Inklaar, and Timmer, 2015).

4 Methodology

This section describes the methodology that we are using for the projection of net immi-

gration flows to Spain between 2017 and 2100, that is, how we actually treat the datasets

described above so as to estimate equation (5).

4.1 World Bank-UN data

The World Bank-UN data tell us the number of migrants born in an origin country that

were residing in a particular destination between 1960 and 2017. These are decennial data

until 2010. To keep the exercise as simple and transparent as possible, we simply assume
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Figure 3: Gross migration flows to and from Spain (1988-2016)

Source: own elaboration on data from INE (2017a).

that 2017 data correspond to 2020. Notice that this is what Özden, Parsons, Schiff, and

Walmsley (2011) would have done if they had had data from 2017 censuses. We are interested

in estimating decennial emigration rates that we can then use to project net emigration to

Spain based on the population projections from United Nations (2015).

The basic expression that we will use is:

nmodt ≡Modt −Modt−10 = podtpopot−10 (6)

Here nmodt is the net emigration between origin o and destination d between year t− 10

and year t. Modt denotes the total number of migrants born in country o who were residing

in country d in census year t. As before, podt refers to the emigration rate and popot−10 is the

total population of country o in the previous decade.
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We can obtain the emigration rate as:

podt =
Modt −Modt−10

popot−10
(7)

4.1.1 Immigration to Spain

In order to compute immigration rates to Spain, we fix the destination so that d = SP .

We use four different poSPt calculations based on the estimation of equation (5) for the

immigration rate to Spain from every origin between 1970 and 2020, between 1980 and

2020, between 1990 and 2020 and finally between 2000 and 2020. We then apply these four

immigration rates to the eight variants of population projections provided by the United

Nations. Hence, we have 32 different projections, denoted by p. For each of these projections,

we have fitted values from equation (5):

ŷoSPt ≡
̂

ln

(
moSPt

moot

)
=

(
β̂

τ

)′
xoSPt − β̂′xoot (8)

We need to recall that we use nmoSPt as a proxy for moSPt since gross migration flows

are not available with the World Bank data. The estimated gross migration flow into Spain

for each of these 32 projections is calculated as:

m̂oSPt =
ŷoSPt

1 +
∑

d ŷodt
̂popot−10 (9)

We explain below different assumptions under which we can recover estimates of the

relevant population for the projection period: ̂popot−10.

4.1.2 Emigration out of Spain

In this case, we fix Spain as an origin (o = SP ) and similarly calculate 32 different values of

estimated gross emigration flows out of Spain to all destinations in the world: m̂SPdt. These

projections are calculated in the same way as above.

4.1.3 Population adjustment

In purity, the migration data we are using refer to individuals born in each of the origins

while the population data include both the origin-born population and the migrants from
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the rest of the world residing in the country in that particular year. We should not expect

this to create great biases in our projections since most of the variation will come from the

rates rather than from the population stocks but, still, it is interesting to make sure that

this is the case.

To this end, we calculate native populations for each of the origins of Spanish immigrants

as well as adjusting the population of Spain by subtracting the immigrants residing in the

country when we project emigration out of Spain. The native populations are calculated as:

popNot = popot −
∑
r 6=o

Mrot (10)

We can make a second population adjustment by actually adding the total number of

individuals born in a particular origin that are emigrants somewhere else. This would also

make sense because these emigrants (say Bolivians living in Chile) could also show up in

the following census as natives living in a different destination country. The fully adjusted

native population would be:

popFot = popot −
∑
r 6=o

Mrot +
∑
d

Modt (11)

In the calculation of the estimated migration flows, we just need to substitute the popu-

lation for the adjusted population data:

m̂odt =
ŷodt

1 +
∑

e ŷoet
̂popFot−10 (12)

The adjusted population shows as estimated because it is also a projection into the future.

The different variants of the population projections from United Nations (2015) include their

own migration scenarios. In order to be completely consistent, we subtract their migration

data and replace it with the migration data generated with our own projections.6 Hence, even

though we are only running a prediction exercise for immigration to Spain and emigration

out of Spain, we do need to estimate the whole matrix of bilateral gross migration flows

6Ideally, we would like to subtract United Nations stocks of immigrants and add stocks of emigrants

but we can only subtract net migrants from the past 10 years. To avoid double counting, we substitute

net migration flows from the United Nations estimates with our own net migration flows rather than net

migration stocks.
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and project it into the future. This is something that we cannot do with the data from INE

(2017a), since we do not have the same type of data for the rest of the countries in the world.

4.2 INE data

The difference between the INE data and the World Bank data is that the former refers to

gross flows whereas the latter deals with net flows. In order to understand how comparable

both methodologies are for the case of Spain, we will first generate immigration and emigra-

tion rates based on net flows and then use all of the available INE information to work on

gross flows.

4.2.1 Net flows

We need to redefine the migration variable in terms of the definitions that we have from the

INE. For immigration, we would have:

moSPt = INFot −OUTot ∀o 6= SP (13)

Now o refers to country of birth in the INE data. INFot are inflows from country of birth

o in year t and OUTot are outflows from country of birth o in year t.

For the emigration of Spanish-born individuals, we would use:

mSPdt = OUT SP
dt − INF SP

dt (14)

Here OUT SP
dt refers to the emigration of Spanish-born individuals going to destination d

in year t and INF SP
dt refers to the return migration of Spanish-born individuals coming from

country d.

We can then check the correlation between the series mSPdt and moSPt from both datasets.

The INE data span the period 1988-2016 so we can make this comparison for the 1990-2000,

the 2000-2010 decade and the 2000-2016 years by summing up all the INE flows during

the corresponding period. The overall correlation between the two series is very high for

immigration into Spain: 0.98. Unfortunately, the series are not comparable for emigration

out of Spain: the correlation is barely 0.47 in this case. This is likely to be due to the

problems of the INE data with respect to emigration that were pointed out above. As a
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result, the emigration predictions based on INE data should be taken with caution as many

emigration flows are likely to be severely underestimated (González-Ferrer, 2013).

4.2.2 Gross flows

Next, we can take advantage of all the data possibilities from the INE for our exercise. First,

we denote by g the subindex for different age-gender groups. We work with six groups:

0-15 year-old men, 0-15 year-old women, 15-65 year-old men, 15-65 year-old women and

65+ year-old men and women. It is straightforward to further disaggregate into smaller age

groups but it has the cost of creating many zero-value cells.

We will have up to four different models for emigration rates:

1. Inflows of foreign-born individuals into Spain. The emigration rate is calculated as:

mgoSPt

mgoot

=
INFgot

popgot
∀o 6= SP (15)

INFgot are the inflows in year t of individuals from group g born in country o. The

population of country o in year t from group g (popgot) is used to proxy for the non-

migrating individuals during the year. The appropriate weight for this regression is

popgot−1.

2. Inflows of Spanish-born individuals into Spain. We need to introduce a new subindex

to denote the country where Spanish-born individuals were residing: r.

mSP
grSPt

mSP
grrt

=
INF SP

grt

popSPgrt+1

∀r 6= SP (16)

INF SP
grt are the inflows of Spanish-born individuals from group g coming from country

of last residence r during year t. For the denominator, we can use popSPgrt+1, the pop-

ulation of Spanish-born individuals living in country r at the beginning of year t + 1.

These data are available only since 2009 in INE (2017c), which limits severely the

number of available observations. The appropriate weight for this regression is popSPgrt .

3. Outflows of foreign-born individuals out of Spain. The emigration rate is calculated as:

mgSPdt

mgdSPt

=
OUTgdt
popgdSPt+1

∀d 6= SP (17)
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OUTgdt are the outflows in year t of individuals from group g born in country d. The

denominator popgdSPt+1 is the population born in country d from group g that still

lived in Spain at the beginning of year t+1. The appropriate weight for this regression

is popgdSPt. The population data are available in INE (2017b) since 1996 although the

outflows only began to be counted in 2002.

4. Outflows of Spanish-born individuals out of Spain. The emigration rate is calculated

as:

mSP
gSPdt

mSP
gSPt

=
OUT SP

gdt

popSPgSPt+1

(18)

OUT SP
gdt are the outflows in year t of individuals from group g born in Spain towards

country d. All Spanish-born individuals with an unknown destination (approximately

one fifth of the total) should are redistributed in proportion to the known-destination

numbers. The denominator popgSPt+1 is the population born in Spain from group g

that still lived in Spain at the beginning of year t+ 1. The appropriate weight for this

regression is popgSPt.

We estimate equation (5) for each of these four series and six age-gender groups and then

proceed to forecast emigration rates as described above with the World Bank data. The only

difference is that for future years we only update the reference populations for Spain and we

keep the variants in United Nations (2015) as the reference for the populations of the rest

of the countries in the world.

5 Results

This section summarizes the main results of the paper. We first estimate different versions

of equation (5) on the World Bank-UN data by sequentially adding additional explanatory

variables. We then repeat the exercise with the INE data and finally we describe our pre-

dictions.
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5.1 Estimates with World Bank-UN data

There are several challenges that taking an equation like (5) to the data must face. The main

ones are listed by Beine, Bertoli, and Fernández-Huertas Moraga (2016) and we explain now

whether we address them and how.

The first one refers to the origin of the migrant. The data we use refers to country of

birth although Özden, Parsons, Schiff, and Walmsley (2011) needed to often use citizenship

as a proxy for country of birth. The second one is the empirical counterpart of the log

odds of migrating. As mentioned above, we proxy the gross migration flows implied by the

model by net migration flows between an origin and a destination. The third challenge is

what to do about multilateral resistance to migration. As long as our objective is to predict

migration flows, this is not a concern for us aside from the fact that the lack of a proxy for

the term MRModt reduces the explanatory power of our model. We will be unable to obtain

unbiased estimates of β and τ , though. This reflects our inability to deal with the fourth

challenge. It will not be possible for us to recover the structural parameters of the random

utility maximization model. The fifth challenge refers to the choice of estimating equation

(5) in logs, as the theory delivers, or in levels as authors such as Grogger and Hanson (2011)

have sometimes preferred. In our case, the fit of the model improves drastically when we

estimate it in logs. A related challenge is the presence of zeros in the data. In our case,

since we are using net flows to proxy gross flows, we have both zeros (38 per cent of the

observations), missing values (30 per cent of our observations, mostly for the UN part of

the data) and negative values (10 per cent of the observations). When we also subtract

missing population values, our preferred estimates presented below only keep 19 per cent of

the potential number of observations. Again, this introduces large biases in our estimated

parameters but it does not significantly affect our predictions. A seventh and last challenge

is the problem of the endogeneity of some of the variables but we already discussed this point

above. We disregard potential endogeneity problems in what follows.

Table 1 introduces our first set of estimates. Column 1 only includes dyadic fixed effects.

Given the R2, this means that 76 per cent of the variability in the data can be attributed

to time-invariant dyadic factors such as physical distance, linguistic distance, cultural dis-

tance, contiguity, common colonial past, etc. Column 2 adds origin-year fixed effects and

destination-year fixed effects. This would control for time-varying origin-specific factors and

destination-specific factors such as inequality, the level of economic activity, the welfare state,
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Table 1: World Bank-UN data (1970-2020)

Variables (1) (2) (3) (4) (5) (6)

Networks 0.21*** 0.11*** 0.11***

(0.04) (0.04) (0.04)

Pop. <15 origin -0.68*** -0.74*** -0.92***

(0.19) (0.23) (0.22)

Pop. 15-65 origin 0.36 0.41 0.08

(0.29) (0.33) (0.31)

Pop. >65 origin 0.17 0.28 0.15

(0.26) (0.28) (0.23)

Pop. <15 dest -0.87*** -0.35 -0.34

(0.17) (0.24) (0.24)

Pop. 15-65 dest 0.94*** 0.08 0.06

(0.21) (0.32) (0.32)

Pop. >65 dest -0.53*** -0.03 -0.01

(0.20) (0.25) (0.25)

GDP pc origin -0.04 1.97***

(0.06) (0.67)

GDP pc origin2 -0.13***

(0.04)

GDP pc dest 0.07 0.07

(0.09) (0.09)

Observations 62,042 62,042 62,042 62,042 44,961 44,961

Adjusted R-squared 0.76 0.92 0.81 0.93 0.82 0.82

Dyad FE Yes Yes Yes Yes Yes Yes

Year FE No Yes Yes Yes Yes Yes

Origin-year FE No Yes No Yes No No

Dest-year FE No Yes No Yes No No

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by origin-year in parentheses.

The dependent variable is the log odds of migrating. All independent variables are in logs

(+1 added to the network variable to keep zeros) and lagged 10 years. Regressions weighted

by the fully adjusted population lagged 10 years.
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the political environment, general migration policies, etc. These controls increase the ex-

planatory power of the model by 16 percentage points. In column 3, we drop these origin and

destination-time fixed effects and add the demographic structure of origin and destination

countries, which would be collinear with them. We almost go back to the same explanatory

power as in column 1. Despite the emphasis on demographic indicators in recent studies,

they are only able to explain 5 additional percentage points of the variability in migration

rates between 1970 and 2020. In column 4, we try to similarly gauge the contribution of

the network variable to explaining the variability across migration rates in the world in

that period. When comparing columns 2 and 4, we find that the network variable does

not add any explanatory power to the model, barely 1 percentage point. In columns 5 and

6, we add our proxy for economic activity at the origin and at the destination: GDP per

capita.7 These variables increase the explanatory power of the model up to 82 per cent. It is

noteworthy that in column 5 no GDP variable appears significant. Only when we consider

the quadratic relationship between the economic activity at origin and the emigration rate

(Clemens, 2014) we find that GDP per capita at origin becomes significant in equation 6.

We find the expected inverted-U relationship, which means that migration rates are first

increasing and then decreasing in the development level of an origin country. Our estimated

turning point, however, is around $2,000 per capita, much lower than the one estimated by

Clemens (2014) without controls but very close to the range that Dao, Docquier, Parsons,

and Peri (2018) refer as relevant for the existence of wealth and credit constraints affecting

migration decisions.

The main conclusion that we can extract from table 1 is that we should not expect great

leverage from the inclusion of additional independent variables into the model. Most of the

action is contained in the dyadic fixed effects. As a result, the main difference in projections

will come from the span of the data that is used to calculate these fixed effects.

Except for column 1, none of the models estimated in table 1 is useful for prediction

purposes. The reason is that they all contain some type of time fixed effect that cannot be

projected into the future. The actual prediction models that we will be using in the next

section are shown in table 2. Model 1 includes only the demographic structure of the origin

and destination country lagged 10 years with respect to the migration rate. The actual

7Notice that we lose many observations with missing GDP data in Feenstra, Inklaar, and Timmer (2015)

when we do this.
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Table 2: Prediction models: World Bank-UN data (1970-2020)

Variables (1) (2) (3) (4)

Networks 0.08* 0.07* 0.08*

(0.04) (0.04) (0.04)

Pop. <15 origin 0.53 0.58 -0.61 -0.86

(0.70) (0.71) (0.78) (0.75)

Pop. 15-65 origin -0.97 -1.08 0.24 -0.16

(1.03) (1.02) (1.14) (1.26)

Pop. >65 origin 1.15 1.08 1.19 1.43

(0.75) (0.77) (0.90) (0.99)

Pop. <15 dest -0.12 0.05 0.27 0.28

(0.21) (0.21) (0.21) (0.22)

Pop. 15-65 dest 0.45** 0.25 -0.34 -0.36

(0.20) (0.20) (0.30) (0.29)

Pop. >65 dest -0.49* -0.45* -0.05 0.16

(0.26) (0.27) (0.35) (0.29)

GDP pc origin -0.77*** 2.05

(0.25) (2.08)

GDP pc origin2 -0.18

(0.13)

GDP pc dest -0.03 0.04

(0.12) (0.11)

Observations 62,042 62,042 44,961 44,961

Adjusted R-squared 0.77 0.77 0.78 0.78

Dyad FE Yes Yes Yes Yes

F-test indep. var. 2.31 8.63 5.00 5.99

p-value 0.03 0.00 0.00 0.00

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by origin-year in parentheses.

The dependent variable is the log odds of migrating. All independent variables are in logs

(+1 added to the network variable to keep zeros) and lagged 10 years. Regressions weighted

by the fully adjusted population lagged 10 years. F-test on the joint significance of the

independent variables presented.
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variables added to the model are the sizes of the populations aged less than 15, between

15 and 65 and more than 65 years old. Only the size of the working age population at

destination and the size of the population above 65 years old at the destination appear

significant but none of the two variables keep a consistent sign across specifications. Still,

the collinearity of many of these variables and the lack of control for multilateral resistance

to migration demands caution for the interpretation of individual coefficients.

The same caution is required for the interpretation of the low and barely significant

coefficient on the network variable. Despite the fact that the network variable is the only

one that is consistently significant across specifications, its magnitude is much lower than

typically reported in the literature, much closer to 1 (Beine, Docquier, and Özden, 2011).

As far as economic conditions are concerned, the coefficient on the GDP per capita at

destination is a relatively precisely estimated zero in all specifications in tables 1 and 2.

Beyond long-run differences in income, there does not seem to be a role for medium-run

fluctuations in economic conditions at destination in explaining migration flows. When we

drop dyadic fixed effects however, the correlation becomes statistically significant and the

same happens if we estimate the model on data until 2000.8 The GDP per capita at origin,

on the contrary, shows the expected negative relationship with the probability of migrating

in column 3 of table 2 with an elasticity of 0.77, close to the classical range in the literature

(Beine, Bertoli, and Fernández-Huertas Moraga, 2016). The quadratic specification is no

longer significant in table 2 but the size of the coefficients is similar to the one reported in

table 1, where year fixed effects were included.

It must be emphasized that none of the models in table 2 adds more than 2 percentage

points in explanatory power to the dyadic fixed effects model from column 1 in table 1.

Together with the lack of significance of most of the coefficients, this raises the legitimate

question of whether the variables included have any meaning at all. To this end, the last

two rows in table 2 present a test of the joint significance of all the independent variables.

The null hypothesis of no significance is always rejected at conventional levels both when all

variables are considered jointly and by blocks, that is, the demographic variables are jointly

significant by themselves and the GDP variables are jointly significant by themselves. Hence

we can still trust that these variables add something meaningful to the model.

8Results available from the authors upon request.
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5.2 Estimates with INE data

The estimation of equation (5) with Spanish data from the National Statistics Office (INE)

turns out to be much more unstable than the estimates based on World Bank-UN data. If we

were to show the results of a table like table 1 or table 2, with different models corresponding

to a different set of explanatory variables, it would be difficult to ascertain clear patterns.

This instability in the coefficients comes from the multicollinearity of many of the variables

included in the model and the low number of observations in certain datasets. This problem

becomes particularly serious when we estimate the model by age and gender groups. In terms

of predictions, the models based on data from the INE have a tendency either to explode or

to implode after a few years.9

As an illustration of the data that are available, we present in table 3 the estimates

equivalent to model 4 in table 2 for the four series of inflows and outflows of foreign-born

and Spanish-born individuals. As the dataset becomes smaller, the coefficients get wilder.

Despite a very good fit of the models, which leads to quite precise predictions in the very short

run, collinear variables inflate coefficients, leading to cyclical variations in the predictions of

migration rates.

As a result, we proceed in the rest of the paper with the much more stable results coming

form the World Bank-UN data.

5.3 Predictions

We next present the predictions associated to 2020-2100 forecasts based on the four models

estimated in table 2. To perform these predictions, we also need to predict the independent

variables from the table. We take at face value the eight variants that United Nations (2015)

provides for the demographic structure of the population. Next, the network variable is

updated every ten years based on our own estimates. We proceed similarly with respect to

our baseline population, which is both our weight for the regression and the reference to

which we apply our fitted emigration rates, as in equation (9). As far as economic activity

is concerned, we follow Hanson and McIntosh (2016) and allow per capita GDP to change

over time since 2014 based on IMF forecasts of annual GDP growth for 2015-2023 (IMF,

2017) minus population growth from United Nations (2015). After 2023, we assume that the

9Results available from the authors upon request.
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Table 3: Prediction models: INE data (1988-2016)

Variables (1) (2) (3) (4)

Foreign-Born Spanish-Born

Inflows Outflows Inflows Outflows

Networks 0.11*** 6.49 -103.74*** -0.07

(0.02) (6.13) (31.72) (0.19)

Pop. <15 origin -2.45*** -26.81*** -2.30 -48.65***

(0.53) (6.35) (1.93) (13.61)

Pop. 15-65 origin 1.82** 32.37*** 2.23* 19.95**

(0.89) (5.20) (1.15) (9.93)

Pop. >65 origin -0.51 19.26*** 0.54 21.92***

(0.70) (3.43) (1.13) (6.60)

Pop. <15 dest -0.80 1.33 -18.12 -0.14

(0.66) (1.37) (12.60) (1.62)

Pop. 15-65 dest 5.17*** -8.28** 18.14*** -3.58**

(1.65) (3.99) (4.62) (1.48)

Pop. >65 dest -0.00 1.02 30.39*** 2.00**

(1.36) (0.82) (3.44) (0.77)

GDP pc origin 5.87*** 0.24 4.07 -9.65**

(1.25) (0.50) (3.46) (3.95)

GDP pc origin2 -0.39*** -0.22

(0.08) (0.17)

GDP pc dest 2.49*** -0.74** -7.07*** 1.08**

(0.41) (0.36) (2.22) (0.52)

Observations 3,742 2,033 296 288

Adjusted R-squared 0.94 0.82 0.98 0.96

Dyad FE Yes Yes Yes Yes

Data 1988-2016 2003-2016 2009-2015 2002-2015

*** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered by origin-year in parentheses.

The dependent variable is the log odds of migrating. All independent variables are in logs

(+1 added to the network variable to keep zeros) and lagged 1 year. Regressions weighted

by the reference population reported in the main text (section 4.2.2).
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growth rate of GDP is constant and equal to the average growth rate between 2000 and 2023

minus the population growth rate from United Nations (2015). We force outliers in terms of

GDP growth, countries below the 5th and above the 95th percentile of average growth rates,

to grow at least as the 5th percentile and at most as the 95th percentile.

5.3.1 World

We first show what happens when we estimate our four models on the 1970-2020 World

Bank-UN data. Figure 4 represents the actual and predicted evolution of the share of

international migrants over the total population between 1960 and 2100. The four models

provide a pretty consistent picture in terms of the evolution of the share of immigrants over

the world population. From a level of 3.1 per cent at the beginning of the prediction period,

the four models go over 4 per cent between 2040 and 2050. They then accelerate to 6 per

cent between 2060 and 2070. Ten years later, by 2080, all models are above 7.5 per cent,

and ten more years make them go past the 9 per cent mark in 2090. By 2100, the estimates

range between 10.6 per cent for model 1 and 12.4 per cent in model 3 of table 2. Model

4, the most complete one, features 11.3 per cent of the world population as international

migrants. Most of this growth in the immigrant population can be explained by the evolution

of the demographic structure, as model 1 is already quite similar to model 4. If we drop

destination-country demographic variables out of model 1, we still predict a similar 12.7 per

cent migration share by 2100.10 Hence, as other papers like Hanson and McIntosh (2016) or

Dao, Docquier, Maurel, and Schaus (2017) have already emphasized, demographic conditions

in origin countries, notably Africa, will generate large migration pressures over the coming

years.

In terms of flows, figure 4 implies moving from the 3.3 millions of immigrants per year

between 2010 and 2017 to between 5.7 and 7.8 millions per year between 2020 and 2030. By

2050, total flows would amount to between 11.6 and 13.5 millions per year. At the end of

the period, the range would be between the 31.6 millions of model 2 and the 38.6 millions

of yearly immigrants from model 3.

The choice of the population variant from United Nations (2015) matters a lot for the

predictions. To see how, figure 5 reproduces the evolution of the share of international

migrants over the world population according to model 4 from table 2 and the 8 population

10Results available from the authors upon request.
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Figure 4: Actual and predicted share of world migrants by model (1960-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out of table 2. We use the medium population

variant of United Nations (2015) to forecast the demographic structure. GDP per capita

predictions as described in the text.

variants in United Nations (2015). While the projections appear fairly similar until 2050,

the range opens quickly afterwards and by the end of the century different variants predict

results as diverse as a share of 3.3 per cent to 17.8 per cent.

Even more important than the population variant is the range of the data over which the

model is disciplined. Both table 1 and 2 presented results from the full dataset: 1970-2020.

However, the models can be computed in subsets of this full dataset. For example, it might

appear reasonable to use only XXIst century data to forecast XXIst century migration flows.
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Figure 5: Predicted share of world migrants by population variant (2020-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out of column 4 table 2. We use all the population

variants of United Nations (2015) to forecast the demographic structure. GDP per capita

predictions as described in the text.

This turns out to be a capital choice. Figure 6 draws four such choices.11 Each line drops the

oldest decade of data at a time from 1960-1970 to 1990-2000. As older data get dropped, the

predictions of the model become smaller for future migration flows. The range of forecasts is

still reasonably narrow by 2050, between 4.6 per cent world migrant share using 1980-2020

data and 2.9 per cent using 2000-2020 data. Nevertheless, the range widens notably again

after that point so that by 2100 the full dataset predicts the already known 11.3 share of

migrants over the world population while the 2000-2020 restricts this number to 3.3 per cent

11The full results from these regressions are available upon request.
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Figure 6: Actual and predicted share of world migrants by estimation dataset (1960-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out of the model in column 4 from table 2 for the

ranges of data reported. We use the medium population variant of United Nations (2015)

to forecast the demographic structure. GDP per capita predictions as described in the text.

of the world population.

5.3.2 Spain

Obviously, these general figures mask a large variety across origin and destination countries.

We focus on the Spanish case to provide a specific example of this variety.

The results in terms of net flows for Spain are presented in figure 7 for the medium

population variant of United Nations (2015). There are very small differences for the predic-

tions of net flows across specifications in the first decade: 2020-2030. They range between
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Figure 7: Actual and predicted net migration flows to Spain (1970-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2015) and predictions out of table 2. We use the medium population

variant of United Nations (2015) to forecast the demographic structure. GDP per capita

predictions as described in the text. Net flows calculated as total inflows of foreign-born to

Spain minus total outflows of Spanish-born out of Spain.

81,000 and 111,000 net migrants received per year. From that point on, the models without

economic variables, columns 1 and 2 in table 2, tend to predict higher yearly inflows than

the models that include GDP per capita variables at origin and at destination, columns 3

and 4 in table 2. By 2050, the former predict between 128,000 and 139,000 net immigrants

to Spain while the models with economic factors range between 249,000 and 253,000 immi-

grants. The divergence in the series stops by 2060 and by 2070 model 4 starts to converge

with the two non-economic models. This happens because some African countries enter the
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decreasing phase of the mobility transition. Until 2070, as their GDP per capita increases,

their emigration rates increase according to model 4. By 2070, they reach the turning point

and their emigration rates start to decline as their economy grows. In 2100, model 3 is an

outlier forecasting 693,000 net migrants to Spain per year. Models 1 and 2 range between

476,000 and 557,000. The full model, model 4 from table 2 stays in a middle prediction of

528,000 net immigrants per year during the last decade of the XXIst century.

Figure 8: Predicted net migration flows to Spain by population variant (2020-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out of column 4 table 2. We use all the population

variants of United Nations (2015) to forecast the demographic structure. GDP per capita

predictions as described in the text. Net flows calculated as total inflows of foreign-born to

Spain minus total outflows of Spanish-born out of Spain.

It is also interesting to look at the variation depending on the population variant and on
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the range of data used to generate the predictions, as we did when looking at the evolution

of the world share of migrants. This is done in figures 8 and 9. We focus in both cases on

the full specification from column 4 in table 2.

Figure 9: Actual and predicted net migration flows to Spain by estimation dataset (1960-

2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out of the model in column 4 from table 2 for the

ranges of data reported. We use the medium population variant of United Nations (2015) to

forecast the demographic structure. GDP per capita predictions as described in the text. Net

flows calculated as total inflows of foreign-born to Spain minus total outflows of Spanish-born

out of Spain.

Figure 8 projects the estimates from model 4 in table 2 between 2030 and 2100 by using

the 8 population variants in United Nations (2017). As we saw for the case of the total

32



migrant share in the world, the different variants give rise to quite dissimilar predictions,

particularly after 2050. In 2050, all the variants’ projections were contained between 177,000

and 273,000 net migrants per year. However, by 2100 the range had become much wider:

between 170,000 and 617,000 immigrants per year.

Next, figure 9 shows actual and predicted net flows of migrants to Spain between 1970

and 2100 by estimating model 4 from table 2 on different datasets. As before, these dataset

progressively drop their oldest decade so that we go from the full dataset in table 2 (1970-

2020) to a restricted version estimated only on XXIst century data (2000-2020). Again, there

is very little variation across data ranges as long as we are close enough in time. For the

first decade, the predictions range between 104,000 and 127,000 net immigrants per year. By

2040-2050, the range is smaller than in figure 7: it goes from 179,000 to 249,000. Finally, by

the end of the period, the predictions range between 76,000 net immigrants per year when

forecasting based on the newest data from 2000-2020 to our known 528,000 net immigrants

per year when forecasting based on the whole dataset from 1970-2020.

Overall, we have calculated 128 different migration trajectories based on 8 population

variants, 4 ranges of data to calculate elasticities and 4 specifications including alternative

sets of regressors. Out of these, our preferred specification is the one that uses all of the

available data and the most complete model, column 4 in table 2. Figure 10 emphasizes our

preferred projection among the 128 that we have presented. Our preferred option could be

considered an average prediction. In general, we confirm the fact that most predictions are

relatively similar over the medium run while they vary wildly over the long run.

Finally, we break down our preferred prediction by inflows and outflows in figure 11. This

figure makes it even clearer than the previous ones that our models consider the Spanish

immigration boom, mostly fitting in the 2000-2010 decade, as an anomaly. Visually, it looks

like inflows are projected to come back to the path they were on by year 2000, with a bit

of an acceleration until the years 2060-2070. Only then the levels of net flows of 2000-2010

would be repeated. On the other hand, outflows are projected to grow until around 2040

when they would start to decline from a maximum just short of 30,000 emigrants per year.

The translation of these flows or net flows into shares can be useful to compare the

evolution of Spanish immigration to the evolution of world migration. According to model 4

in table 2, Spain would rise from a 12 per cent foreign born share in its population in 2020

to 13 per cent in 2030. It would go above 15 per cent in 2040 and 19 per cent in 2050. It
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Figure 10: Predicted net migration flows to Spain by population variant, model and data

range (2020-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out of the models in table 2 over different data

ranges: 1970-2020, 1980-2020, 1990-2020 and 2000-2020. We use all the population variants

of United Nations (2015) to forecast the demographic structure. GDP per capita predictions

as described in the text. Net flows calculated as total inflows of foreign-born to Spain minus

total outflows of Spanish-born out of Spain.

would then continue to grow until reaching 40 per cent in 2100.

As far as the composition of the flows is concerned, Latin America and Africa would

be dominant, with a growing relevance of the latter. In the first decade of the projection,

Morocco would be the main origin country, followed by Venezuela and Ecuador. By 2050,

the top three would be the same but with Venezuela on top and followed closely by Colombia
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Figure 11: Actual and predicted inflows and outflows to Spain (1970-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out of the model in column 4 from table 2. We

use the medium population variant of United Nations (2015) to forecast the demographic

structure. GDP per capita predictions as described in the text.

and Algeria. At the end of the period, Senegal, Gambia and Guinea would join Venezuela

and Ecuador in the top five of origin countries in terms of flows.

5.3.3 Uncertainty

The comparison of the 128 migration scenarios that we have mentioned gives us an idea of the

wide variety of results that can be expected in terms of migration flows. However, it should

not be forgotten that none of these scenarios is taking into account the classical prediction

error associated to each of the models. This subsection provides an approximation to this

35



concept. We focus only on our preferred set of estimates: model 4 in table 2 estimated on

the full dataset 1970-2020.

Model 4, a version of equation (5), is linear. However, as shown in section 4, the predic-

tions of flows out of the log odds of migrating are non-linear. Furthermore, these flows have

to be aggregated over origins or destinations, hence complicating the obtention of analytical

standard errors. As a consequence, we have decided to resort to bootstrapping in order to

generate standard errors and a confidence interval for our predictions. We present our results

below in terms of the standard error associated to the forecast of migration flows to and from

Spain according to our model but the exercise has been done for every dyadic migration flow

between an origin and a destination.

Our bootstrapped standard errors come from resampling observations with replacement

out of our full dataset. We have repeated this procedure 1,000 times to obtain the results

presented below.

Consistently with the evidence from the migration scenarios above, the uncertainty as-

sociated to one particular projection is also increasing over time. The standard error on

projected immigration flows multiplies by more than 10 throughout the projection period,

from 27,000 in the first decade to more than 300,000 in the last. Similarly, while migration

stocks multiply by almost 4, from 6.5 million in 2030 to 24.7 million in 2100, standard errors

associated to immigration stocks multiply by 34, from around 300,000 in 2030 to 10.2 million

in 2100.

We also performed the same exercise for emigration flows and stocks of emigrants out of

Spain. In this case, the numbers are smaller and declining after 2040 for flows and after 2050

for emigrant stocks. Although the standard errors also go down with the size of the flows,

we end up the prediction period with a standard error larger than the predicted outflow of

Spanish emigrants.

Beyond standard errors, perhaps the degree of uncertainty involved in our preferred

prediction is best described by figure 12. The figure represents the net migration flows to

Spain from our preferred specification, the one of model 4 in table 2, together with the

bootstrapped 95% confidence interval. Hence the thick black line in figure 12 is obtained by

subtracting emigration flows from immigration flows and we already explained above how

we computed the 1,000 replications that gave rise to our confidence interval.

We can see in figure 12 that the confidence interval is much wider on the upper than on
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Figure 12: Predicted net migration flows to Spain. Preferred specification and bootstrapped

95% confidence interval (2030-2100)

Source: own elaboration on data from Özden, Parsons, Schiff, and Walmsley (2011) and

United Nations (2017) and predictions out model 4 in table 2. Bootstrapped confidence

interval from 1,000 replications resampling the data with replacement. We use the medium

population variant of United Nations (2015) to forecast the demographic structure. GDP

per capita predictions as described in the text. Net flows calculated as total inflows of

foreign-born to Spain minus total outflows of Spanish-born out of Spain.

the lower part of our main prediction. There is a mechanical reason for this, since predicted

inflows cannot be less than or equal to zero by definition and they dominate the size and

variability of migration outflows, which enter in the calculation of net flows with a negative

sign. As a result, we end up with an asymmetric confidence interval that goes as far up as

almost 1.3 million immigrants per year by 2100, while the lower bound barely goes above
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0.3 in our central prediction of 0.5 million net immigrants per year in the last decade of

the XXIst century. In the first decade, the range is much narrower. The fifth percentile

lies at 84,000 while the ninety-fifth reaches 179,000. Curiously, the ninety-fifth percentile

of 2030 becomes the fifth percentile in 2050, while the upper bound goes up to 482,000 net

immigrants per year.

6 Conclusion

This paper has provided a rich variety of predictions of Spanish immigration and emigration

flows for the XXIst century. Two main conclusions stand out from the paper.

Firstly, the main determinants of migration flows seem to be dyadic and quite time-

invariant. Dyadic fixed effects absorb more than 75 per cent of the historical variation in

migration flows across origins, destinations and time. This could mean that time-invariant

dyadic variables such as distance are the main determinants of migration flows or else that

other relevant determinants have long-standing average effects that do not vary much across

the three dimensions, thus preventing identification. Despite this, the prominent role of

demography at origin emphasized by the recent literature is also confirmed by our estimates

when we use our model to predict future migration flows.

Secondly, the projections of emigration flows for Spain tend to paint a very consistent

picture in the medium run, until around 2050, and an erratic one afterwards. In the medium

run, most models and datasets forecast Spain to receive large quantities of immigrants,

around 200,000 in net terms per year. In the longer run, predictions are all over the place,

from close to zero per year to about 1 million. This huge variation limits the usefulness of

the exercise in the very long run. Furthermore, many of the assumptions needed to generate

the results are reasonable within a generation but become quite difficult to sustain further

into the future.
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